-16t^2+80t+64=0

Simple and best practice solution for -16t^2+80t+64=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+80t+64=0 equation:



-16t^2+80t+64=0
a = -16; b = 80; c = +64;
Δ = b2-4ac
Δ = 802-4·(-16)·64
Δ = 10496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10496}=\sqrt{256*41}=\sqrt{256}*\sqrt{41}=16\sqrt{41}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-16\sqrt{41}}{2*-16}=\frac{-80-16\sqrt{41}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+16\sqrt{41}}{2*-16}=\frac{-80+16\sqrt{41}}{-32} $

See similar equations:

| -4(x+6)-2(x-1)=-5+x | | 8d-6=9d-6d-1 | | a+6=4(a-3) | | -4=k-7/4 | | −11x+6=10x−8 | | r(r^2-r)=0 | | 2x+12=7x-28, | | 4(x-16)=-24 | | 9(x-9)=9x-33 | | 7u=9u+4 | | -21=-7(3+x) | | 3(a+8)=6(1+2a) | | r=-27-3=30 | | a+6=4a-3 | | 7x-5-6x^=0 | | 5q=10+10q | | -20+x/5=35 | | 5-7y=5-9y | | q+2/3=15/9 | | 36=6(-5+v) | | 4x+24-2x=2(x+12) | | (8+n)/(3)=-3 | | 4x+24-2x=2(x+11) | | -5g=(-5)-4g | | x-25=30x+15 | | x/3−4=2 | | 5x+35=8x+20 | | -5(x+3)-20=-10(x+1) | | 9x-2x+66=5x+32 | | 3(2x-3)=-6x-9 | | 6n-2=-3+4+7n+2 | | 5x+35=8x+20* |

Equations solver categories